This is an open access article published under a Creative Commons Non-Commercial No
Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and
redistribution of the article, and creation of adaptations, all for non-commercial purposes.

2

ACS
AUTHORCHOICE

J OURNAL O

AGRICULTURAL AND
FOOD CHEMISTRY

pubs.acs.org/JAFC

Quercetin and Its Metabolites Inhibit Recombinant Human
Angiotensin-Converting Enzyme 2 (ACE2) Activity

Xiaocao Liu, Ruma Raghuvanshi, Fatma Duygu Ceylan, and Bradley W. Bolling*

I: I Read Online

[l Metrics & More |

Cite This: J. Agric. Food Chem. 2020, 68, 13982—13989

ACCESS |

Article Recommendations |

ABSTRACT: Angiotensin-converting enzyme 2 (ACE2) is a host receptor for severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). Inhibiting the interaction between the envelope spike glycoproteins (S-proteins) of SARS-CoV-2 and ACE2 is a
potential antiviral therapeutic approach, but little is known about how dietary compounds interact with ACE2. The objective of this
study was to determine if flavonoids and other polyphenols with B-ring 3',4’-hydroxylation inhibit recombinant human (rh)ACE2
activity. rhACE2 activity was assessed with the fluorogenic substrate Mca-APK(Dnp). Polyphenols reduced rhACE2 activity by 15—
66% at 10 uM. Rutin, quercetin-3-O-glucoside, tamarixetin, and 3,4-dihydroxyphenylacetic acid inhibited rhACE2 activity by 42—
48%. Quercetin was the most potent thACE2 inhibitor among the polyphenols tested, with an ICs, of 4.48 M. Thus, quercetin, its
metabolites, and polyphenols with 3’,4'-hydroxylation inhibited rhACE2 activity at physiologically relevant concentrations in vitro.
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B INTRODUCTION

Human angiotensin-converting enzyme 2 (ACE2) is an 805
amino-acid transmembrane protein that contains an extrac-
ellular domain with a typical HEMGH metalloproteinase zinc-
binding site."”” ACE2 is localized at the lung alveolar epithelial
cells, arterial and venous endothelial cells, renal tubular
epithelium, and the epithelia of the small intestine.” > This
protein acts as monocarboxypeptidase that exclusively cleaves a
single C-terminal residue from angiotensin II (Ang II),
generating angiotensin—(l—7).6 It counterbalances the accumu-
lation of Ang II formed by the action of the angiotensin-
converting enzyme (ACE). The anti-inflammatory properties
of ACE2 are mediated by the activation of the Mas receptor
through the ACE2-Ang-(1-7)-Mas axis’ in the renin—
angiotensin—aldosterone system (RAAS).””” More recently,
ACE2 was identified as a receptor for S-proteins of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to
infiltrate host cells.'"™"? Inhibiting the interaction between S
protein and the host ACE2 is predicted to inhibit SARS-CoV-2
infection.>™"

A preliminary computational molecular docking study
identified quercetin, luteolin, and eriodictyol as potential
inhibitors of the interaction between S protein and ACE2."¢ It
is predicted that polyphenols inhibit the entry of SARS-CoV-2
into cells by restraining the viral S protein—human ACE2
interface; however, detailed studies that describe the
interaction of flavonoids with ACE2 are scarce. It is evident
from earlier studies that the kaempferol and polyphenol-
containing vegetable extracts inhibit rhACE2 activity.'’
Quercetin, luteolin, and eriodictyol are structurally similar
flavonoids having 3',4'-hydroxylated B-rings. Therefore, we
hypothesized that flavonoids and phenolic acids with B-ring
3’,4’-hydroxylation would inhibit ACE2 activity (Figure 1).
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Since polyphenols are extensively metabolized upon con-
sumption, we further evaluated the potential for quercetin
metabolites to also inhibit thACE2. In this study, we describe
the validation of an rhACE2 assay and the extent these
polyphenols act as thACE2 inhibitors.

B MATERIALS AND METHODS (INCLUDING SAFETY
INFORMATION)

Chemicals and Reagents. Purified polyphenols were obtained
for inhibition assays. Quercetin was obtained from Tocris
(Minneapolis, MN). Rutin, luteolin, and 3,4-dihydroxyphenylacetic
acid were obtained from Sigma-Aldrich (St. Louis, MO). Quercetin-3-
O-glucoside, quercetin-3-O-galactoside, quercetin-3-O-glucuronide,
tamarixetin, isorhamnetin, (+)-eriodictyol, (—)-epicatechin, and
nicotianamine were obtained from Cayman Chemical (Ann Arbor,
MI). The ACE2 substrate Mca-APK(Dnp), ACE2-specific inhibitor
DX600, and fluorescence standard Mca (7-methoxycoumarin-4-acetic
acid) were obtained from AnaSpec (Fremont, CA). rhACE2 was
obtained from R&D Systems (Minneapolis, MN). All other chemicals
were obtained from Sigma-Aldrich unless otherwise indicated.

Determination of rhACE2 Enzyme Activity. The catalytic
activity of rhACE2 was monitored using the substrate Mca-
APK(Dnp), in which Mca fluorescence is quenched by Dnp until
cleavage at Pro-Lys18 separates them. Fluorescence intensity was
measured in black 96-well, optical polymer base plates (Thermo
Scientific Nunc, Rochester, NY) at 320 nm excitation and 405 nm
emission, with 180 rpm continuous shaking using a fluorescence plate
reader (Varioskan Flash, Thermo Scientific, Vantaa, Finland). The
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Figure 1. Quercetin and its related glycosides and metabolites, as well as flavonoids with B-ring 3’,4’-dihydroxylation were screened in this study.
Quercetin primarily exists as glycosides in nature (R = glucose, galactose, or rutinose). These quercetin-3-O-glycosides are converted to quercetin
by the host’s gastrointestinal tract and further metabolized by the gut microbiota and host.

assay buffer used in the rhACE2 activity assay was made in-house,
having 0.05 M 2-morpholinoethane-sulfonic acid (MES), 0.3 M NaCl,
and 10 uM ZnCl,, pH 6.8. It was stored at 4 °C when not in use.
Polyphenol standards (quercetin, quercetin-3-O-glucoside, quercetin-
3-O-galactoside, rutin, tamarixetin, isorhamnetin, (z)-eriodictyol,
(—)-epicatechin, luteolin, and 3,4-dihydroxyphenylacetic acid) and
nicotianamine were first dissolved in methanol with a concentration of
2 mM as stock solutions. A methanol vehicle affected assay kinetics, so
to conduct experiments in the absence of methanol, aliquots of these
stock solutions were evaporated at room temperature and then
reconstituted in the assay buffer. The rhACE2 enzyme, the Mca-
APK(Dnp) substrate, and DX600 stock solutions were further diluted
in the assay buffer to working solutions. For accuracy, all of the
reagents were prewarmed to assay temperatures for 10 min before
addition to the microplate.

To assess thACE2 activity and optimize assay conditions, hACE2
was serially diluted in assay buffer with a starting concentration of 250
ng/mL. In a 100 uL total reaction volume, 40 uL of the enzyme
solution was mixed with 60 uL of the Mca-APK(Dnp) substrate
(11.25 uM final concentration). The mixture was incubated at 37 °C
for 60 min. Background controls consisted of 40 uL of assay buffer
with 60 uL of the substrate.

For inhibition assays, 20 uL of the inhibitor was coincubated with
40 uL of rhACE2 (50 ng/mL final concentration), and then 40 uL of
the substrate (final concentration 11.25 M) was added for 10 min,
and the fluorescence was measured at 2 min intervals at 37 °C. For
quercetin, activity was fitted as a variable slope [inhibitor]-normalized
response model in GraphPad Prism 7.0 to determine the ICs, value.
The mixture of 50 ng/mL rhACE2 and 11.25 uM substrate without
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quercetin exhibited the maximum rhACE2 activity. Inhibitors were
screened by coincubating 50 ng/mL rhACE2 enzyme with 11.25 uM
substrate with 10 uM of compounds or 1 uM of DX600 at 37 °C for
10 min, and the fluorescence was determined at 2 min intervals.
Inhibitors were included in background control samples. The
inhibition (%) was calculated by comparing the fluorescence with
the maximum fluorescence as

%ACE?2 activity = [(A — B)/(C — D)] x 100

where A is the fluorescence in the presence of the inhibitor, B is the
background control (inhibitor + substrate) fluorescence, C is the
fluorescence of the uninhibited rthACE2 control, and D is the
background substrate control fluorescence.

Determination of Enzyme Kinetics. K, V,,., and K, were
determined at S0 ng/mL rhACE2 with 0.7—90 uM substrate in the
presence or absence of quercetin (10 M), rutin (10 uM), or DX600
(1 M) for 10 min at 37 °C. The initial velocity was determined by
assessing the velocity over (0—10 min), using linear regression and a
Mca standard calibration curve. K, V;..,, and K, were estimated by
fitting the velocity data to the Michaelis—Menten model in GraphPad
Prism 7.0.

Mca Fluorescence and rhACE2 Enzyme Activity Stand-
ardization. Mca fluorescence reference standard curves were
generated by coincubating 40 uL of Mca (0.0375—5 uM, final
concentration) and 60 uL of the substrate at matching temperature
and times of the assay conditions. Assay buffer (40 uL) with the
substrate (60 uL) was used as a background control. The fluorescence
was recorded at an excitation of 320 nm and emission of 405 nm. A
plot of relative fluorescence units (RFU) versus Mca concentration
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Figure 2. thACE?2 activity toward the substrate Mca-APK(Dnp). (A) Time-dependent increase of the Mca product from the 11.25 yM substrate by
thACE2 at 3.13—250 ng/mL at 37 °C. (B) Dose response of rhACE2 on product formation with the 11.25 yM substrate for 10 min at 37 °C.
Linear regression was R = 0.9901, P < 0.0001. Data were generated from the three independent experiments with triplicates and expressed as means

+ SDs.

was used to determine the amount of the final product in pmol of
Mca. In this study, 1 RFU = 40.09 pmol of Mca at 37 °C in the
presence of 11.25 uM substrate. For routine testing, the rhACE2
enzyme activity of thawed protein aliquots was normalized. Briefly,
the rthACE2 stock solution aliquot at 10 pg/mL was diluted in the
assay buffer, then incubated with the substrate (final concentration:
rhACE2 50 ng/mL, substrate 11.25 uM) for 10 min at 37 °C. Based
on the catalytic product as a reference of 1.358 RFU for 50 ng/mL
rthACE2 enzyme, the thACE2 stock solution was then diluted to be
equivalent to the reference activity.

Statistical Analysis. All incubations were conducted in triplicate
with three independent experiments. Quantitative data are presented
as the mean + standard deviation (SD) or the standard error of the
mean (SEM), as specified in the figure legends. Statistical tests were
performed using GraphPad Prism 7.0. Two-sided Student’s t-tests
were used for comparisons between two groups, whereas one-way
ANOVA or two-way ANOVA with Tukey’s post hoc was used for
comparisons among multiple independent groups. Significant differ-
ences were considered at P < 0.05.

B RESULTS

Optimization of the rhACE2 Activity Assay. An
rthACE2 protein dose response was established from 3.13 to
250 ng/mL with 11.25 M substrate at 37 °C (Figure 2). After
10 min of incubation with the substrate, enzymatic activity
declined (Figure 2A). At 10 min of incubation, the amount of
the product formed was linear from 3.13 to 250 ng/mL
rhACE2 (Figure 2B). Thus, a 10 min incubation period was
used for subsequent experiments.

The intra- and inter-assay reproducibility were determined
to test the robustness of the assay (Table 1). The intra-assay

Table 1. Intra- and Inter-Assay Variation of rhACE2
Activity”

intra-assay RFU” inter-assay RFU

rhACE2 concentration CVv Cv
(ng/mL) mean  SD (%) mean SD (%)

100 3.88 0.31 7.88 3.97 0.10 2.52

S50 1.61 0.10 6.54 1.62 0.04 2.50

25 0.68 0.04 6.04 0.71 0.07 9.96

“Activity of thACE2 was determined at 37 °C for 10 min with the
11.25 uM substrate. “Relative fluorescence unit (RFU) values were
generated from subtracting the substrate blank from the readings for
the corresponding wells. Data are from n = 3 experiments with
triplicate samples.
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coefficient of variance (CV) for RFU with 25, 50, and 100 ng/
mL of rhACE2 and the 11.25 uM substrate at 37 °C was 6.04—
7.88%, whereas the inter-assay CV was 2.52—9.96%.

Quercetin Inhibits rhACE2 Activity. The reaction rate of
50 ng/mL rhACE2 in the presence of 5—100 yM quercetin
was time- and concentration-dependent at 37 °C (Figure 3A).
In contrast, the reaction rate of rhACE2 was consistent at
0.100 RFU/min (P > 0.05). After 2.5 min, 100 M quercetin
reduced rhACE2 activity to 0.004 + 0.029 RFU/min (P <
0.0001 vs control), while 10 uM quercetin reduced activity to
0.048 + 0.022 RFU/min (P = 0.0007 vs control). Incubation
with § uM quercetin reduced rhACE2 activity from 2.5 to 8.5
min, but at 10.5 min, the difference became nonsignificant
relative to the control (P > 0.05). The impact of time on
rhACE2 inhibition was greatest for S uM quercetin (Figure
3B). To further describe the time dependency of inhibition,
the quercetin ICg, value was determined at 2.5 and 10.5 min
(Figure 3C,D). The rhACE2 ICs, of quercetin increased from
approximately 4.48 uM after 2.5 min to 29.5 M at 10.5 min.

Inhibition of rhACE2 was dependent on temperature
(Figure 4). rhACE2 activity increased with temperature
(Figure 4A). The amount of Mca formed at 10 min was 2.2-
fold when temperature increased from 25 to 37 °C. At each
temperature, 10 pM quercetin inhibited rhACE2 activity
relative to the control (Figure 4B).

Kinetics of Enzyme Inhibition. A kinetic study was
performed at increasing substrate concentrations to determine
how rhACE2 activity is linked to catalytic efficiency. At the
optimal reaction conditions (Figure 2A), activity over a 10 min
incubation period was linear over varying protein concen-
trations, indicating that the reaction rate was stable over this
period. The Michaelis—Menten constant K, and maximum
velocity V., were determined by coincubation of 0.7—90 M
of the substrate and 50 ng/mL rhACE2 in the presence of
quercetin (10 yM), rutin (10 M), or DX600 (1 uM), as a
positive control (Figure S, Table 2). Overall, these compounds
decreased the affinity of thACE2 to the substrate (e.g., higher
K,, values compared to the rhACE2 control) and lowered the
velocity (with the exception of rutin), resulting in a decreased
catalytic efficiency (K_/K,,). DX600 reduced the maximum
initial velocity (3.49 + 0.66 pmol/min) by 74% compared with
the ACE2 control (13.3 + 0.5 pmol/min) and weakened the
affinity of rhACE?2 for the substrate with a 5.8-fold increased
K,, value and a reduced K_,,/K,, value. A similar trend was also
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Figure 3. Quercetin inhibits thACE2 activity. (A) thACE2 velocity (ARFU/min) and (B) rhACE2 inhibition (% of control) in the absence or
presence of 5S—100 uM quercetin incubation with S0 ng/mL rhACE2, 11.25 uM substrate, for up to 10.5 min at 37 °C. For (A), rate differences
were analyzed by two-way ANOVA, followed by Tukey’s multiple-comparison test. Incubation time accounted for 5.92% of total variation (P =
0.0002), whereas the quercetin concentration accounts for 78.2% with P < 0.0001, however their interaction was not significant (P > 0.0S). Within
each time interval, bars bearing different letters indicate significant differences (P < 0.05). For (B), the % inhibition was determined relative to the
untreated control at each time point. Differences were assessed by one-way ANOVA, followed by Tukey’s multiple-comparison test among different
quercetin concentrations at each time interval, *P < 0.005 compared to the control. For (A) and (B), the data were obtained by three independent
experiments with triplicates and shown as means + SDs. (C, D) Analysis of rhACE?2 inhibition by quercetin concentration at 2.5 min (C) and 10.5
min (D). Data were fitted using a variable slope [inhibitor]-normalized response model in GraphPad Prism 7. Data are represented by three
independent experiments with triplicates, and ICg, values are means + SEMs.
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Figure 4. Temperature affects thACE2 activity. (A) Temperature dependence on the time course of product formation with or without 10 yM

quercetin. (B) Effect of temperature on product formation after 10 min of incubation with or without 10 #M quercetin. Assays were performed at

50 ng/mL rhACE2 enzyme concentration with 11.25 M substrate. Statistical analysis was performed by one-way ANOVA, followed with Tukey’s

multiple-comparison testing, ***P < 0.0005 and ****P < 0.0001. Differences between the treated and untreated samples are denoted by upper and

lowercase letters, respectively. Data are means + SDs and are of three experiments performed with triplicate samples.

observed with quercetin, as it had 28% lower V,,,, (9.56 + 0.36
pmol/min) and 1.7-fold increased K, compared to the control.
For rutin, although the K, value was lower than rhACE2 alone,
the maximum velocity was higher than the rhACE2 control.
Thus, the K_,./K,, value for rutin was not similar to quercetin
(Table 2).

Polyphenol Inhibition of rhACE2 Activity. Polyphenols
with 3’,4’-hydroxylation and known quercetin metabolites
(isorhamnetin, tamarixetin, quercetin-3-O-glucuronide, and
3,4-dihydroxyphenylacetic acid) were evaluated for rhACE2
inhibition. Nicotianamine, a natural product from soybeans,
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and an ACE2 inhibitor'” as well as DX600 were used as
controls (Table 3). All of these polyphenols inhibited rhACE2
activity. The extent of rhACE2 inhibition was dependent on
time. After 10 min of incubation, the inhibition was
significantly decreased relative to 2 min for all polyphenols
except (+)-eriodictyol. DX600, nicotianamine, and quercetin
were more potent inhibitors than the other tested polyphenols
at 2 min. However, at 10 min, quercetin inhibition of rhACE2

was less than that of DX600 and nicotianamine.
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Figure S. Plot of the rate of Mca product formation (Apmol/min) as
a function of substrate concentration (uM) in a steady-state reaction
condition. thACE2 enzyme (50 ng/mL) was incubated with various
concentrations (0.70, 1.41, 2.81, 5.63, 11.25, 22.50, 45, and 90 uM) of
the substrate in the presence of 10 uM quercetin, 10 M rutin, or 1
#M DX600. The absence of quercetin/rutin/DX600 was regarded as
the control. The initial velocities of each treatment were obtained by
fitting the fluorescence intensity value versus time (0—10 min) data
with linear regression. The plot of velocity versus substrate
concentration was fitted to the Michaelis—Menten equation to
determine the apparent K, V,..,, and K_,, constant (listed in Table 2).
Fit for control: R* = 0.974; rutin: R* = 0.986; quercetin: R* = 0.987;
and DX600: R* = 0.949. The fitted curves were different from each
other (P < 0.0001). Results are from three independent experiments
with triplicates. Data present means + SDs.

B DISCUSSION

Angiotensin-converting enzymes, ACE and ACE2, share
considerable homology with 41.8% sequence identity at the
catalytic domain, and both belong to the M2 family of
metallopeptidases with HEMGH zinc-binding motifs as an
amino-terminal catalytic domain.””°”** Despite these sim-
ilarities, their structures enable different substrate specificity
and peptidase activity in the RAAS.*”**** Structural and
functional studies have revealed that flavonoids inhibit ACE
because of the double bond between C2 and C3 on the C-ring;
the ketone group of C4 at the C-ring; and the 3',4’-catechol
group in the B-ring.” >’ Although the ACE inhibition
mechanism by flavonoids has not yet been fully understood,
the catechol group in the B-ring may exert a charge—char%e
interaction with the Zn** ion in the ACE active site.”®
Specifically, luteolin exhibits the highest capacity to inhibit
ACE activity among 17 flavonoids with an ICy, value of 23
UM, followed by quercetin with an ICj, value of 43 uM.*
Under optimized assay conditions, quercetin inhibited
rhACE2 activity by reducing its affinity for the Mca-APK(Dnp)
substrate and led to a lower catalytic efficiency (K./K,). In
addition, quercetin had mixed rhACE?2 inhibition as it reduced
Vinax and increased K. Structurally related polyphenols also

max

Table 3. Polyphenols Inhibit rhACE2 Enzyme Activity”

inhibition (%)

class polyphenol 2 min 10 min
flavonols quercetin 662 + 224 38.1 + 1.9%*
quercetin-3-O-glucoside ~ 47.7 + 3.7° 20.9 + 2.4%*
quercetin-3-O- 342 +£37° 12,9 + 2.8%%
galactoside
rutin 483 £ 47°  14.5 + 277
quercetin-3-O- 33.1 + 4.9% 10.2 + 3.3%%
glucuronide
tamarixetin 41.5 + 5.0F 19.6 + 3.2F%*
isorhamnetin 147 £ 14% 122 + 0.59*
flavanones (£)-eriodictyol 244 + 14" 256 + 08"
avanols — )-epicatechin 4+ S. .39 + 3.06”
flavanol picatech 274 + 57" 439 + 3.06"*
flavones luteolin 37.1 + 0.6 26.1 + 1.70%
phenolic acids ~ 3,4- 42.1 + 345 648 + 2.61°%
dihydroxyphenylacetic
acid
known ACE2 nicotianamine 64.5 + 0.5% 81.2 + 0.1%%*
inhibitors
DX600 67.7 £ 1.3* 803 + 1.3V*

“Screening experiments were performed by coincubation of 50 ng/
mL rhACE2 enzyme and 11.25 uM substrate at 37 °C for 2 or 10 min
in the presence of 10 uM of compounds, except for 1 uM of DX600.
bStatistical analysis was by one-way ANOVA with the Dunnet post
hoc test, with P < 0.05 considered significant, denoted by uppercase
letters. Two-tailed t-tests were conducted for each inhibitor to
evaluate differences by time, denoted by * at 10 min, where P < 0.05
was considered significant. Data are means + SDs from three
individual experiments with triplicates.

inhibited rhACE2. Quercetin metabolites (isorhamnetin,
tamarixetin, 3,4-dihydroxyphenylacetic acid, and quercetin-3-
glucuronide), rutinosides and glycosides of quercetin, and
other flavonoids (luteolin, (+)-eriodictyol, and (—)-epicate-
chin) also inhibited rhACE2. Notably, polyphenols were less
potent inhibitors than DX600. However, flavonoids still
decreased K, and K, /K., values, indicating interaction with
the ACE2 active site. Further analysis by computational
simulation, X-ray crystallography, or NMR needs to be
employed to define the specific interactions of flavonoids
with 3’,4’-dihydroxylation and ACE2.

Quercetin is mainly distributed in foods as glycosides and
rutinosides. It is metabolized by deglycosylation, glucuronida-
tion, sulfation, methylation, or further catabolism by gut
microbiota to phenolics such as 3,4-dihydroxyphenylacetic
acid. In humans, quercetin intake results in C,,,, values of <10
UM.”® Microbial quercetin metabolites are more abundant,
presumably because other flavonoids are also metabolized to
these phenolic acids. For example, fasting serum levels of 3,4-
dihydroxyphenylacetic acid have been reported as high as

Table 2. Steady-State Kinetic Parameters of 10 uM Rutin, 10 #uM Quercetin, and 1 gM DX600 with rhACE2“

treatment Vinax (pmol X min~")?
rhACE2 13.3 £ 0.5
rhACE2 + rutin 15.1 + 0.6
rhACE2 + quercetin 9.56 + 0.36
rhACE2 + DX600 3.49 + 0.57

K, (uM)”
132 + 1.6
21.6 + 2.1
229 + 2.2
76.5 + 219

Ke (s7)° Ke/Kp (WM™ s7)
3.78 + 0.15 0.29
428 +0.16 0.20
271 + 0.10 0.12
0.989 + 0.156 0.013

“50 ng/mL rhACE2 enzyme was incubated with various concentrations (0.70, 1.41, 2.81, 5.63, 11.25, 22.50, 45, and 90 M) of the substrate in the
presence of 10 uM quercetin, 10 M rutin, or 1 uM DX600. Results represent triplicates from three independent experiments. The V, ., K, and

K

cat

values were expressed as means + SEMs. K, and V,,,. were determined by fitting the velocities to the Michaelis—Menten relationship by

nonlinear regression. “Turnover number K_,, was calculated from the V,,,, value (K ,; = V,../ [E]), using a molecular mass of 85 kDa for rhACE2.
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~100 uM.” ACE2 is primarily a membrane-bound enzyme
located in the heart, lungs, vasculature, kidneys, and oral and
digestive tracts.’” In rats, quercetin and its methyl metabolites
accumulate to nmol/g (dw) concentrations in the lung, kidney,
heart, and muscle after consumption of 1% quercetin for 11
weeks.> After a single dose of [2-'*C]quercetin-4'-glucoside to
rats, 71% of the dose was recovered in the GI tract at 6 h,
which later declined to 3.4% by 24 h.>> Thus, ACE2 inhibition
is plausible in the oral cavity and digestive tracts.

Increased flavonoid consumption is associated with reduced
mortality from cardiovascular diseases in older women.”’
Meta-analyses of randomized controlled trials have associated
the intake of >500 mg quercetin per day with reduced blood
pressure.”¥>> Yet the precise antihypertensive mechanism of
quercetin is still not clear,**"** partly due to the variation of
administration dosage, experimental duration, type of experi-
ment design, and participant population.” In vitro studies have
demonstrated that flavonoid-rich foods are capable of
inhibiting ACE activity.*** Also, an acute hypertensive rat
model supports the antihypertensive potential of quercetin
through reduced plasma ACE activity.”’ In contrast, ACE
inhibition by flavonoids has not been observed in other human
and animal studies.”~*" On the bias of homology between
ACE and ACE2, it would be expected that inhibition of ACE2
by quercetin would be independent of its ability to modulate
blood pressure. Further mechanistic studies are needed to
define the impact of polyphenol ACE2 inhibition on the
RAAS.

Inhibition of ACE2 may be undesirable because functional
ACE2 inhibits inflammation by reducing activation of the
angiotensin II type 1 receptor pathway."> SARS-CoV-2 uses
ACE?2 as a receptor to enter cells, and the resulting proteolysis
of ACE2 contributes to lung damage.'>** While disrupting S
protein and ACE2 interactions might prevent SARS-CoV-2
entry to cells, inhibiting ACE2 activity could be detrimental to
infection recovery. Therefore, it is important to clarify if
polyphenol—ACE2 interactions inhibit S-protein binding and
ACE2 activity in tissues. If both occur, it will be important to
understand if the antioxidant and anti-inflammatory activity of
polyphenols through other pathways (e.g., inhibition of nuclear
factor kB and activation of nuclear factor erythroid 2-related
factor 2) would negate the proinflammatory aspects of ACE2
inhibition during SARS-CoV-2 infection.

In summary, polyphenols with 3',4'-dihydroxylation inhibit
thACE2 activity in vitro. Among the polyphenols tested,
quercetin was the most effective rhACE?2 inhibitor, and several
of its known metabolites also function as inhibitors. In the
context of flavonoid metabolism, it is plausible that dietary
polyphenol intake could inhibit ACE2, particularly in the
digestive tract. Given these findings, it is urgent to further
investigate the functional effects of polyphenols on ACE2 in
vivo.
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